permutación - significado y definición. Qué es permutación
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es permutación - definición

NOCIÓN MATEMÁTICA
Permutaciones; Permutacion
  • Representación gráfica de la permutación <math>\sigma</math> que revela su estructura compuesta por 2 ciclos de longitud 4.
Resultados encontrados: 15
permutación         
permutación
1 f. Acción de permutar. Permuta.
2 Mat. Cada uno de los *conjuntos diferentes que se pueden formar con cierto número de elementos entrando todos ellos en cada grupo y diferenciándose en el orden.
permutación         
sust. fem.
1) Acción y efecto de permutar.
2) Lingüística. Metátesis, cambio de lugar de cualquier elemento gramatical.
permutación         
Palabras Relacionadas
Permutación         
thumb|120 px|Cada una de las seis filas es una permutación diferente de tres bolas distintas.
Permutación cíclica         
TIPO DE PERMUTACIÓN
Ciclo (permutacion); Permutacion circular; Ciclo (permutación); Permutación circular
Una permutación cíclica (o ciclo) es un tipo especial de permutación que fija cierto número de elementos (quizás ninguno) mientras que mueve cíclicamente el resto. En caso de no fijar ningún elemento lo denominaríamos permutación circular.
Permutación      
Informalmente, una permutación es un reordenamiento de una colección de objetos. Por ejemplo, si se tienen tres personas, Pedro, Luis y Carlos, cada una de las diferentes formas de ordenarse en fila:
Pedro-Luis-Carlos, Pedro-Carlos-Luis, Luis-Pedro-Carlos, ...
es una permutación de ellos. También se usa el término permutaciones (o variaciones) para referirse al número de diferentes ordenamientos.

Ciudad Permutación      
Ciudad Permutación es una ciudad de ficción, descrita en la novela homónima de Greg Egan. Ciudad Permutación es una ciudad solo en un sentido limitado: técnicamente hablando, es un programa de realidad virtual. Esta contenido en un universo propio, generalmente llamado Eliseo, que se basa en una arquitectura de autómata celular TVC (llamado así Turing, Von Neumann y Chiang). En cierto modo, el Eliseo solo existe debido a que, como es posible que exista, entonces existe. Este planteo filosófico se encuentra en la escuela megárica de la metafísica, que admite que todo lo que es posible existe, aunque quizás en un mundo paralelo al nuestro.

Matriz permutación         
La matriz permutación es la matriz cuadrada con todos sus n×n elementos iguales a 0, excepto uno cualquiera por cada fila y columna, el cual debe ser igual a 1. De acuerdo a esta definición existen n!
Matriz permutación      
Matriz cuadrada con todos sus n×n elementos iguales a 0, excepto uno cualesquiera por cada fila y columna, el cual debe ser igual a 1. De acuerdo a esta definición existen n! matrices de permutación distintas, de las cuales una mitad corresponde a matrices de permutación par (con el determinante igual a 1) y la otra mitad a matrices de permutación impar (con el determinante igual a -1).

Ciudad permutación         
Ciudad Permutación es una novela de ciencia ficción de Greg Egan, publicada en 1994 y ganadora del Premio John W. Campbell Memorial.

Wikipedia

Permutación

En matemáticas, una permutación de un conjunto es, en términos generales, una disposición de sus miembros en una secuencia u orden lineal, o si el conjunto ya está ordenado, una variación del orden o posición de los elementos de un conjunto ordenado o una tupla. La palabra "permutación" también se refiere al acto o proceso de cambiar el orden lineal de un conjunto ordenado.[1]

Las permutaciones difieren de las combinaciones, que son selecciones de algunos miembros de un conjunto sin importar el orden. Por ejemplo, escritas como tuplas, hay seis permutaciones del conjunto {1, 2, 3}, a saber (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) y (3, 2, 1). Estas son todas las ordenaciones posibles de este conjunto de tres elementos. Los anagramas de palabras cuyas letras son diferentes también son permutaciones: las letras ya están ordenadas en la palabra original, y el anagrama es una reordenación de las letras. El estudio de las permutaciones de conjuntos finitos es un tema importante en los campos de la combinatoria y la teoría de grupos.

Las permutaciones se utilizan en casi todas las ramas de las matemáticas y en muchos otros campos de la ciencia. En informática, se utilizan para analizar algoritmos de ordenación; en física cuántica, para describir estados de partículas; y en biología, para describir secuencias de ARN.

El número de permutaciones de n objetos distintos es n factorial, normalmente escrito como n!, que significa el producto de todos los enteros positivos menores o iguales a n.

Técnicamente, una permutación de un set S se define como una biyección de S a sí mismo. [2][3]​ Es decir, es una función de S a S para la cual cada elemento ocurre exactamente una vez como un valor de imagen. Esto está relacionado con el reordenamiento de los elementos de S en el que cada elemento s es reemplazado por el correspondiente f(s). Por ejemplo, la permutación (3, 1, 2) mencionada anteriormente es descrita por la función α {\displaystyle \alpha } definida como

α ( 1 ) = 3 , α ( 2 ) = 1 , α ( 3 ) = 2 {\displaystyle \alpha (1)=3,\quad \alpha (2)=1,\quad \alpha (3)=2} .

El conjunto de todas las permutaciones de un conjunto forman un grupo llamado grupo simétrico del conjunto. La operación de grupo es la composición (realizar dos reordenamientos dados sucesivamente), que da como resultado otro reordenamiento. Como las propiedades de las permutaciones no dependen de la naturaleza de los elementos del conjunto, suelen ser las permutaciones del conjunto { 1 , 2 , , n } {\displaystyle \{1,2,\ldots ,n\}} las que se consideran para estudiar las permutaciones.

En combinatoria elemental, las k-permutaciones, o permutaciones parciales, son los arreglos ordenados de k elementos distintos seleccionados de un conjunto. Cuando k es igual al tamaño del conjunto, son las permutaciones del conjunto.

¿Qué es permutación? - significado y definición